Document Type : Original Article

Authors

1 Department of Aerospace, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran

2 Department of Physical Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the femur was subjected to different impact loading and orientations and also material properties. In addition to a reference healthy model of analysis, a total of 14 cases including four different loading conditions, six different bone density conditions and four different load orientations were considered. Results: Findings showed that the models with higher bone density cannot considerably reduce the stress under the impact loadings but porous models receive high mechanical stress which the bone prone to injury. The stress and displacement of the bone model received more values distributed through the femoral neck. Conclusion: Porous bone models had greater stress values under an impact load. Higher and faster impacts may create multi-fracture breaks of the femur. The inferior femoral neck regions are the most vulnerable part in response to the impacts.

Keywords

Main Subjects

1. Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 2012; 23(9): 2239-56. doi: 10.1007/s00198-012-1964-3.
2. Bojsen-Møller F, Tranum-Jensen J, Simonsen EB. Bevægeapparatets Anatomi. Copenhagen: Munksgaard; 2014.
3. Reddy AC, Kotiveerchari B. Simulation of femur bone fracture in car accident using CT scan data and finite element analysis. Int J Sci Res 2015; 4(11): 1805-7. doi: 10.21275/v4i11.nov151552.
4. Soveid M, Serati AR, Masoompoor M. Incidence of hip fracture in Shiraz, Iran. Osteoporos Int 2005; 16(11): 1412- 6. doi: 10.1007/s00198-005-1854-z.
5. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int 1997; 7(5): 407-13. doi: 10.1007/pl00004148.
6. Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet 2005; 366(9500): 1885-93. doi: 10.1016/ s0140-6736(05)67604-0.
7. Keyak JH. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 2001; 23(3): 165-73. doi: 10.1016/s1350-4533(01)00045-5.
8. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 2005; (437): 219-28. doi: 10.1097/01.blo.0000164400.37905.22.
9. Koivumäki JE, Thevenot J, Pulkkinen P, Kuhn V, Link TM, Eckstein F, et al. Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 2012; 50(4): 824-9. doi: 10.1016/j. bone.2012.01.012.
10. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 1999; 32(10): 1013-20. doi: 10.1016/s0021-9290(99)00099-8.
11. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech 1998; 31(2): 125-33. doi: 10.1016/ s0021-9290(97)00123-1.
12. Sepehri B, Yazdi AA, Rouhi G. Comparison of the Effect of Different Mechanical Properties on the Stress Analysis of Tibia under Transversal Impact Loading Using Finite Element Method. In: Lim CT, Goh JCH, eds. 6th World Congress of Biomechanics (WCB 2010). August 1-6, 2010 Singapore. Berlin: Springer; 2010. p. 788-91. doi: 10.1007/978-3-642-14515-5_200.
13. Ridzwan MIZ, Pal B, Hansen UN. Finite element prediction of hip fracture during a sideways fall. International Scholarly and Scientific Research & Innovation 2012; 6(10): 476-9.
14. Ford CM, Keaveny TM, Hayes WC. The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 1996; 11(3):377-83.
15. Arun KV, Jadhav KK. Behaviour of human femur bone under bending and impact loads. Eur J Clin Biomed Sci 2016; 2(2): 6-13. doi: 10.11648/j.ejcbs.20160202.11.
16. Zdero R, Aziz MSR, Nicayenzi B. Quasi-static stiffness and strength testing of whole bones and implants. In: Zdero R, ed. Experimental Methods in Orthopaedic Biomechanics. Academic Press; 2017. p. 19-32. doi: 10.1016/B978-0-12- 803802-4.00002-0.
17. Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 2003; 25(9): 781-7. doi: 10.1016/s1350-4533(03)00081-x.
18. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech 1975; 8(6): 393-405. doi: 10.1016/0021-9290(75)90075-5.
19. Tippanagoudar N, Krishna A. Finite element analysis of tibia bone. Int J Eng Sci Comput 2018; 8(12): 19534-7.